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Abstract

Experimental results and analytical results are presented on chaotic vibrations of a shallow double-curved shell-panel

subjected to gravity and periodic excitation. Modal interactions in the chaotic responses are discussed. The shell-panel with

square boundary is simply supported for deflection. In-plane displacement at the boundary is elastically constrained. In the

experiment, time histories of the chaotic responses at the spatial multiple positions of the shell-panel are measured for the

inspection of modal interaction. In the analysis, the shallow shell-panel is assumed to have constant curvatures along to

orthogonal directions and geometric initial imperfection. The Donnell–Mushtari–Vlasov type equation is used as

governing equation with lateral inertia force. Assuming deflection with multiple modes of vibration, the governing

equation is reduced to a set of nonlinear ordinary differential equations by the Bubnov–Galerkin procedure. Chaotic

responses are integrated numerically. The chaotic responses, which are obtained by the experiment and the analysis, are

inspected with the Fourier spectra, the Poincaré projections, the maximum Lyapunov exponents and the Lyapunov

dimension. Contribution of modes of vibration to the chaotic responses is analyzed by the principal component analysis,

i.e., Karhunen–Loève transformation.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Thin shells and plates are used as fundamental elements of light weight structures such as aircraft,
spacecraft and vehicles. The shell has higher bending stiffness than that of a plate because of the curvature of
the shell surface. Then, the shell can sustain larger lateral force. However, when the lateral force on the shell
exceeds the critical magnitude, snap-through transition of the shell will occur owing to the buckling
phenomenon. Furthermore, when the shell is subjected to periodic excitation force, nonlinear resonance
responses of the shell are generated. In typical regions of the excitation frequency and of the excitation
amplitude, chaotic vibrations are generated accompanied by the dynamic snap-through transition,
even though the amplitude of excitation is small. Since chaotic vibrations exhibit random-like responses,
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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higher modes of vibration as well as the fundamental mode of vibration are involved in the responses.
Therefore, the chaotic vibrations of the shell may cause cyclic fatigue. The generation of the chaotic vibration
is drastically influenced by small variation of shell configuration and of constraint conditions at the boundary
of the shell. In practical design of shell structures, it is important to reveal the chaotic responses as well as the
resonance response of the shell.

Resonance responses of shells have been studied by many researchers [1–10]. Chaotic phenomena
of shell type structures were studied mainly for plates and shallow shell-panels. Chaotic responses of an
infinitely long buckled plate were studied by Dowell [11]. Nayfeh and Raouf [12] studied bifurcations
of nonlinear responses of an infinitely long cylindrical shell. Nonlinear periodic responses and chaotic
responses of a square plate were studied by Yang and Sethna [13] and Chang et al. [14]. Chaotic responses
of saddle form cable-suspended roofs and a shallow spherical shell were analyzed by Fan et al. [15]
and by Soliman and Gonc-alves [16], respectively. These problems were analyzed by considering a reduced
number of degree-of-freedom. Amabili [17] analyzed nonlinear vibrations of doubly curved shallow
shells and chaotic responses were calculated. Finite element approaches to shallow shell-panels were
conducted by Zhou et al. [18] and by Sansour et al. [19]. Experiments of nonlinear responses of a panel and
buckled plates under acoustic pressure were conducted by Meastrello et al. [20] and by Murphy et al. [21],
respectively.

Nonlinear responses of an arch and a post-buckled beam show fundamental features of responses of a
shell-panel. The authors have studied nonlinear responses of a clamped arch [22,23] and chaotic responses of a
post-buckled beam [24–28] both by experiment and analysis. The predominant chaotic responses are
bifurcated from the sub-harmonic resonance responses of 1/2 and 1/3 orders. For chaotic vibrations of
shell-panels, the authors have presented the analytical results on chaotic responses of a shallow circular-
cylindrical shell-panel with simply supported rectangular boundary [29], and with an in-plane elastic support
at the boundary [30]. The governing equation of the shell-panel is reduced to a multiple-degree-of-freedom
system. The chaotic vibrations were examined for various shell curvatures [29]. Furthermore, chaotic
responses of the cylindrical shell-panel with a concentrated mass were studied [31]. Recently, experimental
results associated with the analytical results on chaotic vibrations of a cylindrical shell-panel were presented by
the authors [32]. Quantitative excellent agreements were obtained for the chaotic time responses, the figures of
the Poincaré projections, the maximum Lyapunov exponents and the number of vibration modes which
contributes to the chaos. However, vibration modes generated in the chaos cannot be confirmed by the
convergence of the maximum Lyapunov exponent by increasing the embedding dimension. The principal
component analysis enables an optimal estimation of linear vibration modes and contribution ratio to the
chaotic responses [33].

In this paper, to investigate modal interaction in the chaotic responses of a shallow double-curved s
hell-panel, both experimental and analytical results are presented, including the principal component
analysis. The shallow double-curved shell-panel is simply supported for deflection at a square boundary.
In-plane displacements at the boundary are constrained elastically. The shell-panel is subjected to gravity and
periodic lateral excitation. In the experiment, a thin shallow shell-panel is used with square form and small
curvatures along the orthogonal directions in the double-curved surface. All edges of the shell-panel are
supported by flexible adhesive films. Then, the above boundary conditions are satisfied. First, linear natural
frequencies and characteristics of restoring force of the shell-panel are measured. Next, by exciting the
shell-panel with lateral periodic acceleration, the nonlinear frequency–response curves are obtained.
Chaotic time responses are detected at multiple positions of the shell-panel. In the analysis, the
Donnell–Mushtari–Vlasov equation, with geometric initial imperfection and lateral inertia force is used as
a governing equation. Applying the Bubnov–Galerkin procedure, the equation is reduced to a set of nonlinear
ordinary differential equations. Multiple modes are taken into account in the analysis. Nonlinear periodic
responses are calculated by the harmonic balance method. Time histories of the chaotic responses are
calculated numerically by the Runge–Kutta–Gill method. Chaotic phenomena of the shallow shell-panel
are discussed by comparing the results of the experiment and the analysis. Chaotic time responses are
inspected by the Fourier spectra, the Poincaré projections, the maximum Lyapunov exponents and the
Lyapunov dimension. Contribution of vibration modes to the chaotic responses is inspected by the principal
component analysis.



ARTICLE IN PRESS
S. Maruyama et al. / Journal of Sound and Vibration 315 (2008) 607–625 609
2. Shallow shell-panel and supporting condition

For the test specimen of the shallow double-curved shell-panel, a phosphor-bronze sheet of thickness
0.198mm is cut to square form. Both surfaces of the shell-panel are painted with acrylic resin of white color.
The white surface of the shell-panel increases the measuring accuracy of the deflection as a reflection target of
a laser displacement sensor used in the experiment. The thickness h of the shell-panel including the painted
layer is h ¼ 0:24mm. Young’s modulus E and the mass density r of the shell-panel are measured as E ¼

62:4GPa and r ¼ 7:52� 103 kg=m3, respectively, including the painted layer. Poisson’s ratio n is taken as 0.33.
Fig. 1 shows the shallow shell-panel and a rectangular supporting frame. The supporting frame made of
duralumin has square form with inner length 140mm. Side lengths of the shell-panel are measured as a ¼

139:7mm and b ¼ 139:5mm. All edges of the shell-panel are supported by the frame through the strips of
flexible adhesive film. The thickness of the film is 0.072mm. One end of the adhesive film wraps around the
edge of the shell-panel, while the other end is glued to the inner wall of the frame. As shown in the figure, the
strips of films are glued alternately along the panel edge, then the boundary of the shell satisfies the conditions
of simply support for deflection and of elastic constraint for in-plane displacement. In the figure, the x-axis
and the y-axis are defined along the edges of the double-curved shell-panel and the z-axis is defined
perpendicular to the shell surface. In-plane displacements U and V are denoted along the x-axis and the y-
axis, respectively. The deflection of the shell-panel is denoted by W along the z-axis. The shell-panel is
subjected to the gravitational acceleration g and periodic acceleration ad cos Ot in the lateral direction of the
shell surface, where ad , O and t correspond to the amplitude of excitation, the excitation angular frequency
and time, respectively. The periodic acceleration to the shell-panel is applied by shaking the supporting frame
with an electromagnetic exciter.

In the experiment, initial curved configuration of the shell surface is measured by the laser displacement
sensor. To minimize the static lateral deformation of the shell-panel by the gravitational force, the initial
configuration is measured by setting the shell surface parallel to the gravitational direction. The configuration
of the shell-panel is shown in Fig. 2. In the figure, the shell-panel has the curved configuration both in the
x-direction and in the y-direction. The radii of curvature rx and ry are denoted in the x-direction and in the
y-direction, respectively. The radii of curvature are approximated by the least square method in each direction.
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Fig. 1. Shallow double-curved shell-panel and supporting condition.
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Fig. 2. The configuration of the shell-panel parallel to the gravity.
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At the typical positions y=b, the radii rx along the x-direction are shown as follows:

ðy=b ¼ 0:21; rx ¼ 11� 103 mmÞ; ð0:5; 9:3� 103 mmÞ; ð0:79; 20� 103 mmÞ.

In the y-direction, the radii ry are obtained as

ðx=a ¼ 0:21; ry ¼ 12� 103 mmÞ; ð0:5; 7:2� 103 mmÞ; ð0:79; 8:1� 103 mmÞ.

It is found that the radii of curvature at the center of the shell-panel are smaller than the radii near the
boundaries. Averaged radii r̄x and r̄y including the radii at other positions are calculated as: r̄x ¼ 16� 103 mm;
r̄y ¼ 8:6� 103 mm. In the figure, symmetric and asymmetric geometric imperfection remains in the
configuration of the shell-panel measured from the curved surface with the averaged radii r̄x and r̄y. Then
the total configuration of the shell-panel can be expressed as a double-curved surface including the symmetric
and asymmetric initial imperfection. The boundary of the shell-panel has small undulation along the edges less
than 0.14mm.

For the analysis, the shell-panel is assumed to have a shallow double-curved configuration with radii of
curvature Rx and Ry along the x-direction and the y-direction, respectively, and geometric imperfection. The
shell-panel is assumed to be simply supported for deflection along all edges of the rectangular boundary.
Furthermore, for the in-plane displacement, the opposite edges are assumed to be attached to in-plane springs
with equal stiffness. The springs act only in normal directions to the edges. At the edges x ¼ 0 and x ¼ a, the
spring constant per unit length is denoted by Kx, while the in-plane springs at the edges y ¼ 0 and y ¼ b have
the spring constant Ky.
3. Procedure of experiments

The shell-panel is initially deformed by the gravitational force to the static deflection. The shell-panel and
the supporting frame are excited laterally by the electromagnetic exciter. Dynamic responses of the shell-panel
relative to the supporting frame are detected by the laser displacement meter.
3.1. Measurement of linear natural frequencies and nonlinear restoring force

As fundamental properties of the shell-panel, linear natural frequencies and characteristics of nonlinear
restoring force are measured.

Applying periodic sound pressure on the shell-panel, resonant response with infinitesimal small amplitude is
measured by the laser displacement sensor. Natural frequencies of the shell-panel are inspected with a
spectrum analyzer. Natural modes of vibration are detected by scanning the sensor over the shell surface.
Characteristics of nonlinear restoring force of the shell-panel are obtained through the static deflection
by static concentrated force. The laser displacement sensor and a load cell are used. The concentrated force
is applied to the shell-panel, by pressing the detection-needle of the load cell to the shell-panel. Then, the
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shell-panel deflects to an equilibrium position. Thus, the characteristics of the nonlinear restoring force of the
shell-panel can be obtained.
3.2. Procedure of vibration test on chaotic responses

Fig. 3 shows a schematic diagram of a vibration test apparatus. The supporting frame of the shell-panel,
which is mounted on the vibration table, is shaken periodically with an electromagnetic exciter. Thus, periodic
lateral acceleration can be applied on the shell-panel. The excitation is provided by the devices as numbered
from 1 to 5. The exciter controller 1 generates a sinusoidal periodic signal. The periodic signal is amplified
through the power amplifier 2. The vibration exciter 3 drives the supporting frame with periodic acceleration.
The accelerometer pickup 4 fixed on the frame detects the acceleration applied on the shell-panel 5. The signal
of acceleration is fed back to the controller 1. Thus, the peak amplitude of acceleration can be fixed to a
constant level during a sweep of the excitation frequency. Dynamical responses of the shell-panel are measured
with the instruments of the multiple laser displacement sensor from 6 to 8. To inspect modal patterns
generated in the chaotic responses, six sets of laser displacement sensors 6 are arranged over the shell surface.
The displacement of the shell-panel relative to the supporting frame is detected with the laser displacement
sensors 6 and the sensor 7. One of the sensors 6 measures the responses of the shell-panel and the periodic
displacement of the frame simultaneously. The sensor 7 measures the periodic displacement of the frame only.
The controller 8 subtracts the two signals. With this subtraction, the pure dynamic response wðtÞ of the
shell-panel can be detected, where w and t indicate the non-dimensional deflection and time, respectively,
which will be defined in Section 4. One of the sensors 6 is set on the sliding table 9 and the sensor travels on the
surface of the shell-panel. Thus, static deflection and the vibration mode can be inspected.

Nonlinear frequency–response curves of the shell-panel are obtained by sweeping the excitation frequency.
The time responses of the shell-panel detected by the laser sensors are transformed to the amplitude in a root
mean square value wrms with the digital voltmeter 10. The excitation frequency applied on the shell-panel is
counted with the digital frequency counter 11 through the signal of periodic acceleration measured with the
accelerometer 4. The amplitude wrms of the shell response and the excitation frequency f are transferred to the
computer 12. In the figure, o denotes the non-dimensional excitation frequency which is defined in Section 4.
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Fig. 3. Vibration test apparatus.
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Then, the nonlinear frequency–response curves are recorded with the relation between wrms and o.
The digital spectrum analyzer 13 records time responses of chaotic vibrations and transforms the responses to
the Fourier spectra. Furthermore, the chaotic time responses are transmitted to the computer 12 and the
maximum Lyapunov exponents lmax are calculated. The Poincaré projection of the response is obtained by
the following step. Dynamic displacement of the chaotic responses is transformed to velocity by the
differentiation amplifier 14. The set of the displacement w and the velocity w;ot is sampled sequentially based
on a sampling pulse once in every period of the excitation. The pulse is generated with the phase meter 15 and
the delayed pulse oscillator 16. The Poincaré projections of the chaotic response are stored in the computer 12.
To inspect contributions of multiple vibration modes to the chaotic responses, time responses at six positions
over the shell-panel are recorded with the multi-channel digital recorder 17.

In the vibration test, the chaotic response of the shell-panel is drastically influenced by a small deviation of
thermal elongation. To obtain precise results of the chaotic responses, the in-plane thermal elongation of the
shell-panel relative to the supporting frame should be kept constant during the vibration test. The
temperatures both of the shell-panel and the supporting frame are kept constant within 20� 0:5 degree of
centigrade [32].

4. Procedure of analysis

4.1. Governing equations and boundary conditions

The geometry of the shallow double-curved shell-panel and the supporting conditions are explained in
Section 2. In the experiment, the chaotic response of the thin shell-panel is restricted to lower frequency range
where bending vibrations are dominant, then the effects of in-plane inertia forces can be neglected in the
analysis. The magnitude of the in-plane inertia is estimated to be less than 10�3 times of the terms of in-plane
stress resultants in the in-plane equation of motion. The Donnell–Mushtari–Vlasov type equations [34]
modified with lateral inertia force are employed.

Denoting the total deflection and the geometric initial imperfection by W and W 0, respectively, and the
stress function by F , the non-dimensional governing equations of the shell-panel, including lateral inertia force
are shown as

r
4
f ¼ c½b2ðw2

;xZ � w2
0;xZ � w;xxw;ZZ þ w0;xxw0;ZZÞ � axb

2
ðw� w0Þ;ZZ � ayðw� w0Þ;xx�, (1)

Lðw;w0; f Þ � w;tt þ r
4
ðw� w0Þ � axb

2f ;ZZ � ayf ;xx � b2ðf ;xxw;ZZ � 2f ;xZw;xZ þ f ;ZZw;xxÞ

� ðps þ pd cosotÞ � qsdðx� x1ÞdðZ� Z1Þ ¼ 0, (2)

where r
2
� q2=qx2 þ b2q2=qZ2 is the Laplace operator. Eq. (1) corresponds to the compatibility equation in

terms of the stress function of the shell-panel, while Eq. (2) shows the equation of motion for the deflection
coupled with the stress function. The following non-dimensional quantities are introduced.

½x; x1� ¼ ½x;x1�=a; ½Z; Z1� ¼ ½y; y1�=b; b ¼ a=b; ax ¼ a2=Rxh; ay ¼ a2=Ryh,

½w;w0� ¼ ½W ;W 0�=h; ½u; v� ¼ ½U ;V �ða=h2
Þ,

½nx; ny; nxy� ¼ ½Nx;Ny;Nxy�ða
2=DÞ; f ¼ F=D; ½kx; ky� ¼ ½Kx;Ky�ðah2=DÞ,

½ps; pd � ¼ ½g; ad �ðra4=DÞ; qs ¼ Qsa
2b=Dh; t ¼ O0t; o ¼ O=O0. (3)

In the foregoing, O0 ¼ ð1=a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
D=rh

p
and c ¼ 12ð1� n2Þ are used, where D ¼ Eh3=12ð1� n2Þ is the bending

stiffness of the shell-panel, E, n and r are Young’s modulus, Poisson’s ratio and the mass density of the shell-
panel, respectively. The value of h;E and r are measured including the painted layer. The symbols x and Z are
the non-dimensional coordinates. The symbol b is the aspect ratio of the rectangular boundary of the
shell-panel. The symbols ax and ay are the non-dimensional shell curvatures in the x-direction and the
y-direction, respectively. The symbols w and w0 are the non-dimensional deflections, while u and v are the in-
plane displacements in the x-direction and the Z-direction, respectively. In Eqs. (1) and (2), subscripts
following a comma denote partial differentiations. The symbols Nx;Ny and Nxy are the stress resultants acting
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on a cross-section perpendicular to the x-direction and the y-direction. The symbols kx and ky represent the
non-dimensional coefficients of the in-plane springs attached to the edges (x ¼ 0 and 1) and the edges (Z ¼ 0
and 1), respectively. The symbols ps and pd correspond to the non-dimensional intensity of distributed force by
the gravitational acceleration g and the periodic acceleration ad , respectively. The symbol qs is the non-
dimensional concentrated force. To measure the characteristics of the nonlinear restoring force of the
shell-panel, a concentrated force Qs is loaded at the point ðx ¼ x1; y ¼ y1Þ. The symbols o and t are the non-
dimensional excitation frequency and the non-dimensional time, respectively. The non-dimensional stress
resultants nx; ny and nxy are related to the stress function f as

nx ¼ b2f ;ZZ; ny ¼ f ;xx; nxy ¼ �bf ;xZ. (4)

The in-plane displacements u and v are related to w;w0 and f as

c½u;x � axwþ ð1=2Þw2
;x� ¼ b2f ;ZZ � nf ;xx,

c½bv;Z � aywþ ðb2=2Þw2
;Z� ¼ f ;xx � nb2f ;ZZ,

c½bu;Z þ v;x þ bw;xw;Z� ¼ �2bð1þ nÞf ;xZ. (5)

The simply supported conditions for the deflection along all edges of the shell-panel is shown as

x ¼ 0; 1 : w ¼ 0;w;xx ¼ 0; Z ¼ 0; 1 : w ¼ 0;w;ZZ ¼ 0. (6)

The in-plane boundary conditions are assumed as

x ¼ 0 :

Z 1

0

½nx � kxðu� u0Þ�dZ ¼ 0;

Z 1

0

nxy dZ ¼ 0,

x ¼ 1 :

Z 1

0

½nx þ kxðu� uaÞ�dZ ¼ 0;

Z 1

0

nxy dZ ¼ 0,

Z ¼ 0 : b
Z 1

0

½ny � kyðv� v0Þ�dx ¼ 0; b
Z 1

0

nxy dx ¼ 0,

Z ¼ 1 : b
Z 1

0

½ny þ kyðv� vbÞ�dx ¼ 0; b
Z 1

0

nxy dx ¼ 0. (7)

In the foregoing, u0; ua; v0 and vb are the initial in-plane displacements for the outer part of the in-plane springs
connected to the edges of the shell-panel. The in-plane stress resultant and the restoring force of the in-plane
spring are in equilibrium with averaged form along the edges [35]. The problem consists of finding the
solutions w and f which satisfy the governing equations and the boundary conditions.

4.2. Reduction to multiple-degree-of-freedom system

Using the Bubnov–Galerkin method, the governing equations of the shallow double-curved shell-panel
with geometric initial imperfection is discretized to the equations of a multiple-degree-of-freedom system.
The same procedure was applied to the problems of a shallow cylindrical shell-panel [30–32] by the
authors. In this paper, the procedure is summarized briefly. The deflections w and w0 of the shell-panel are
assumed as

½wðx; Z; tÞ;w0ðx; ZÞ� ¼
X

m

X
n

½b̂mnðtÞ; âmn�ẑmnðx; ZÞ; ðm; n ¼ 1; 2; 3; . . .Þ,

ẑmnðx; ZÞ ¼ sinmpx sin npZ, (8)

where b̂mn is an unknown time function and âmn is the given constant representing the geometric initial
imperfection, while ẑmn is the coordinate function. The indices m and n denote the half-wave numbers of the
coordinate function along the x-axis and the y-axis, respectively. The stress function f can be expressed by the
homogeneous solution and particular solution, in terms of the unknown function b̂mn, of the compatibility
equation (1), as shown in the appendix. The Galerkin procedure is applied to the equation of motion (2),
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the following condition is derived for the coordinate function ẑrs as:Z 1

0

Z 1

0

Lðw;w0; f Þẑrsðx; ZÞdxdZ ¼ 0; ðr; s ¼ 1; 2; 3; . . .Þ. (9)

Substituting both Eqs. (8) and the solution of f into Eq. (9) and performing the integration, the set of
nonlinear ordinary differential equations, in terms of b̂mnðtÞ, is reduced. In Eq. (9), the subscripts r and s of the
coordinate function ẑrs imply the half-wave numbers of the configuration of deflection in the x-direction and
the Z-direction, respectively. A combination of the subscripts r and s represents the modal pattern of
deflection, which can be referred as a new index i. The unknown time function b̂mnðtÞ is replaced by a new
variable �bjðtÞ, i.e., �bj � b̂mn, �zj � ẑmn. These variables are counted in the order of a set of the half-wave
numbers of the shell configuration. For example, b̂11, b̂12 and b̂21 are referred as �b1, �b2 and �b3, respectively. The
set of nonlinear ordinary differential equations can be rearranged as follows:X

j

�Bij
�bj;tt þ

X
j

�Cij
�bj þ

X
j

X
k

�Dijk
�bj
�bk þ

X
j

X
k

X
l

�Eijkl
�bj
�bk
�bl

� �Fi � ðps þ pd cosotÞ �Gi ¼ 0; ði; j; k; l ¼ 1; 2; 3; . . .Þ. (10)

In the foregoing, �Bij is the coefficient of the inertia term, while the coefficients �Cij, �Dijk and �Eijkl correspond to
the restoring forces of linear, quadratic and cubic terms, respectively. The �F i is the constant coefficient and �Gi

is related to the term of periodic excitation. These coefficients include the parameters of the shell geometry and
the in-plane spring.

The static deformation appears under the static forces ps and depends on the in-plane constraint at the
boundary. Hence, the static deformation and the dynamic responses are solved by the following sequential
procedure. First, the deflection wðx; Z; tÞ of the shell-panel is divided into the static deflection wðx; ZÞ and to the
dynamic displacement ~wðx; Z; tÞ as

wðx; Z; tÞ ¼ wðx; ZÞ þ ~wðx; Z; tÞ, (11)

½wðx; Z; tÞ;wðx; ZÞ; ~wðx; Z; tÞ� ¼
X

j

½ �bjðtÞ; bj ; ~bjðtÞ��zjðx; ZÞ; ðj ¼ 1; 2; 3; . . .Þ,

where bj is an unknown constant and ~bjðtÞ represents an unknown time function of the dynamic displacement
measured from the static equilibrium position. The variable �bjðtÞ is expressed as �bjðtÞ ¼ bj þ

~bjðtÞ. Then,
substituting this relation into Eq. (10), the two sets of coupled equations, with bj and ~bjðtÞ, are obtained. From
the set of cubic equations in terms of bj, the static deflection wðx; ZÞ can be obtained. Thus, the equation of
motion in terms of the ~bj can measure the response from the static equilibrium position.

Furthermore, omitting the nonlinear terms as well as the terms of external periodic force, the linear
equation is obtained for free vibration. The linear natural frequencies oi and corresponding linear natural
mode of vibration ~zi are obtained. Using the normal coordinates bi corresponding to ~zi, the deflection ~w
measured from the static equilibrium point can be expressed as

~wðx; Z; tÞ ¼
X

i

biðtÞ~ziðx; ZÞ; ði ¼ 1; 2; 3; . . .Þ. (12)

Transforming the coordinate ~bj to the normal coordinate bi, one can obtain a set of nonlinear differential
equations in the standard form:

MðbiÞ � bi;tt þ 2eioibi;t þ o2
i bi þ

X
j

X
k

Dijkbjbk

þ
X

j

X
k

X
l

Eijklbjbkbl � pdGi cosot ¼ 0; ði; j; k; l ¼ 1; 2; 3; . . .Þ. (13)

The foregoing equation has couplings only in the quadratic and cubic nonlinear terms. A linear damping term
is introduced, where ei represents a damping ratio corresponding to the ith linear mode of vibration.
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4.3. Determination of periodic responses and chaotic responses

The periodic responses are calculated by the harmonic balance method [36]. The periodic solution bi is
assumed as

bi ¼ Ci1m0 þ
X

p

½Ci1mp cos mpotþ Ci2mp sin mpot�; ði ¼ 1; 2; 3; . . . ; Ic; p ¼ 1; 2; 3; . . .Þ, (14)

where Ci1m0;Ci1mp and Ci2mp are unknown constants. To obtain the solutions of principal resonance and super-
harmonic resonance, m is chosen as unity, while to get sub-harmonic resonance responses of 1/2 or 1/3 orders,
m is taken as 1/2 or 1/3, respectively.

Chaotic vibrations show random-like non-periodic responses. Therefore, to determine chaotic responses, it
is required to integrate numerically the nonlinear ordinary differential equation (13). The chaotic responses of
Eq. (13) is calculated numerically with the Runge–Kutta–Gill method.

4.4. Evaluation of chaotic responses

Multiple methodologies of inspection are required to confirm the chaotic responses of the shell-panel. A
Fourier spectrum of a non-periodic time response shows a broadband spectrum. However, dominant
components of the spectrum are related to the periodic resonance response from which the chaotic response is
bifurcated. The Poincaré projections of the chaotic responses show a fractal pattern on the phase plane.

The chaotic responses can be confirmed with the Lyapunov exponent. It is defined as the exponential
growth rate of the distance between two neighboring trajectories in the phase space of dynamical system. If the
Lyapunov exponents have one or more positive values, the response can be confirmed as chaos. The Lyapunov
exponents are calculated with the procedure proposed by Wolf et al. [37] and Takens [38]. The Lyapunov
dimension dL, which shows a fractal feature of chaos, can also be calculated by the Lyapunov exponents [39].
Furthermore, number of predominant vibration modes, which contributes to the chaos, can be estimated by
the convergence of the Lyapunov dimension or the maximum Lyapunov exponent when the assumed
dimension of the phase space is increased [40].

Finally, the principal component analysis [33,41], which is also called as the Karhunen–Loève
transformation or the proper orthogonal decomposition, is applied. The principal component analysis
enables the estimation of the modal pattern in the chaotic response. In the principal component analysis,
the covariance matrix of the simultaneous time responses at multiple positions ðxp; ZpÞ, ðp ¼ 1; 2; . . . ; dÞ of the
shell-panel is calculated. The covariance matrix is transformed to an orthogonal matrix, which results in the
eigenvalue problem of the covariance matrix. The eigenvector Ui ði ¼ 1; 2; . . . ; dÞ represents the modal pattern
and the corresponding eigenvalue pi denotes the contribution of the modal pattern to the chaotic response.
Contribution ratio mi of the ith modal pattern to the all modal patterns is calculated as

mi ¼ pi

Xd

j¼1

,
pj . (15)

The modal patterns and their contribution ratio reveal modal interaction, i.e., contribution of individual
modes to the chaotic vibrations of the shell-panel.

5. Results and discussion

5.1. Fundamental properties of the shell-panel

Nonlinear and chaotic responses of the shallow shell-panel are influenced severely by the geometric initial
imperfection, the shell curvature and the in-plane boundary condition. Then, the unknown parameters of the
shell-panel, i.e., the geometric initial imperfection, the curvature and the stiffness of the in-plane spring, are
identified with the trial-and-error computation comparing with the experimental results of the configuration of
the shell surface, the linear natural frequencies and the characteristics of restoring force.
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Fig. 4. The deformed configuration of the shell-panel under the gravity.

Table 1

Natural frequencies and vibration modes of the shell-panel

Mode

Modal pattern

Experimental results, omn Analytical results, omn Deviation (%)

i ðm; nÞ

1 (1,1) 25.0 25.4 2

2 (2,1) 51.1 55.4 8

3 (1,2) 57.2 61.5 7

4 (2,2) 86.3 67.2 28

5 (3,1) 105 98.2 7

6 (1,3) 112 106 6
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Fig. 4 shows the deformed configuration of the shell-panel under the gravitational force ps ¼ 380. The shell-
panel has large deflection due to the gravitational force which exceeds the snap-through load. Assuming the
shell-panel has the double-curved configuration and the geometric initial imperfection, the following
parameters have been identified.

ax ¼ 4:0; ay ¼ 7:5; â11 ¼ �0:4; â21 ¼ �0:04; â12 ¼ 0:12,

kx ¼ 0:001; ky ¼ 0:001; u0 ¼ ua ¼ 0; v0 ¼ vb ¼ 0, (16)

where u0; ua; v0 and vb are the initial in-plane displacements of the outer part of the in-plane springs. Since the
components â11; â21 and â12 play the most important role for the linear natural frequencies and the
characteristics of nonlinear restoring force, the other components are identified as zero. To determine
the linear natural frequencies and the static deflection of the shell-panel, 16 terms are assumed for the modal
expansion in Eq. (8), where integers m and n are m; n ¼ 1; 2; 3; 4.

Table 1 shows the linear natural frequencies. In the table omn stands for the non-dimensional frequency.
The integers m and n denote half-wave numbers of vibration-mode along the x-axis and the Z-axis,
respectively. Modal patterns related to the natural modes of vibration are shown with the notation ðm; nÞ. The
analytical linear natural frequencies omn are also listed in the table. The linear natural frequencies omn of
the modes (1,1), (2,1) and (1,2) obtained by the experiment are well simulated by the analytical results within
the discrepancy of 5.7 percent on average. The discrepancy between the experimental results and the analytical
results of the natural frequency of the mode (2,2) is larger than those of the other lower vibration modes.
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The discrepancy seems to be caused by the initial distortion of the shell-panel with higher asymmetric
configuration including the undulation along the panel edges.

Fig. 5 shows the characteristics of nonlinear restoring force. The static deflections wnðx; ZÞ of the shell-panel
is shown by the concentrated force qs acting on the center of the shell-panel. The deflections are measured
from the static equilibrium positions of the shell surface under the gravitational force. The deflections wn at the
point x ¼ 0:36, Z ¼ 0:36 is marked by circle.

Analytical result of the restoring force at the same point is denoted by the solid line. When the deflection of
the shell-panel is increased to the negative z-direction from the static equilibrium position by the concentrated
force, the gradient of curve of the restoring force decreases. Thus the characteristics of a softening spring
appear. Furthermore, the gradient of curve changes from zero to negative. In the range of deflection from
w ¼ �0:5 to �1:8, the curve of the restoring force shows a negative gradient. As the deflection increases larger,
the restoring force exhibits the type of a hardening spring.

The characteristics of restoring force in the experiment agree fairly well with the analytical results within
relatively small deflection.

5.2. Frequency– response curves of the shell-panel

To inspect the generation of chaotic responses bifurcated from resonance responses, nonlinear
frequency–response curves of the shell-panel are obtained under the gravitational force ps ¼ 380 and the
periodic excitation force pd cosot. The amplitude of excitation pd is kept constant pd ¼ 760. Experimental and
analytical nonlinear frequency–response curves are shown in Figs. 6(a) and (b), respectively. In the figure, the
abscissa indicates the excitation frequency o which covers the range from o ¼ 20 to 80. Natural frequencies of
the shell-panel are also indicated by the white circles on the abscissa. The ordinate shows the non-dimensional
amplitude ~wrms of the responses with a root mean square value of the deflection ~w at the position x ¼ 0:79 and
Z ¼ 0:21. The frequency of the excitation is swept very slowly to avoid transient effects on the chaotic response
of the shell-panel in the experiment. The amplitude ~wrms is averaged with relatively long time interval. In the
experimental result shown in Fig. 6(a), the solid line indicates the frequency–response curve, while the dotted
lines show the frequencies where jump phenomena occur. In typical frequency ranges, non-periodic response is
generated with amplitude modulation of ~wrms. In the analytical result shown in Fig. 6(b), the thick solid lines
indicate the frequency–response curves of the stable periodic responses obtained by the harmonic balance
method. For the computation of nonlinear dynamical responses, first six modes are considered within
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relatively lower excitation frequency range. The linear damping ratios of the individual modes are
assumed as ei ¼ 0:014 ði ¼ 1; 2; . . . ; 6Þ. The damping ratio is estimated for the lowest vibration mode from
experimental results of damped free vibration of the shell-panel and is assumed to be the same for all the
vibration modes. The non-stationary amplitudes of the chaotic responses are indicated with thin solid lines.
The chaotic responses are calculated by the numerical integration. The amplitudes of the chaotic response
are averaged within short time intervals. Comparing the frequency–response curves of the experiment
with the analytical ones, the type of the periodic resonance is determined by the notation ðm; n : jÞ.
Former indices m and n indicate the mode of vibration generated in the resonance, while index j stands for the
order of the periodic resonance. For example, (1,1:1) indicates the response of the principal resonance
corresponding to the lowest mode of vibration (1, 1), while (1,1:1/2) means the sub-harmonic resonance
of 1/2 order.

In the experiment, as shown in Fig. 6(a), when the excitation frequency is decreased from o ¼ 80, the
non-resonant response prevails. Close to the frequency o ¼ 60, the steady-state periodic response of the
sub-harmonic resonance (1,1:1/2) is generated. When the frequency is o ¼ 57, the non-periodic response is
generated. The chaotic response is bifurcated from the sub-harmonic resonance (1,1:1/2) and is confirmed as
the chaos by the evaluation explained later in Sections 5.3 and 5.4. The chaotic response is denoted by the
notation Cðm; n : jÞ, where ðm; n : jÞ represents the dominant mode of vibration and the predominant type of
resonance excited in the chaotic vibration. The chaotic response Cð1; 1 : 1=2Þ covers the frequency from
o ¼ 57 to 46. The frequency–response curve of the sub-harmonic resonance of the lowest mode of vibration
exhibits the nonlinear characteristics of a softening-and-hardening spring. Moreover, a new type of chaotic
response Cð1; 1 : 2=3Þ is bifurcated from the sub-harmonic resonance response (1,1:1/2) at the frequency
o ¼ 41. This chaotic response corresponds to the ultra-sub-harmonic resonance response (1,1:2/3) and
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continues within the frequency from o ¼ 41 to 35. Finally, the chaotic response transits to the large amplitude
periodic vibration of the principal resonance (1,1:1) through the jump phenomenon.

In the analytical result shown in Fig. 6(b), the chaotic responses Cð1; 1 : 1=2Þ are generated within the
frequency range from o ¼ 48:0 to 49.4. Furthermore, the other chaotic responses Cð1; 1 : 2=3Þ are also
generated with lower frequency range from o ¼ 44:6 to 47.8. The non-stationary amplitudes of the chaotic
response Cð1; 1 : 2=3Þ overlap on the response curves of the sub-harmonic resonance (1,1:1/2) and the ultra-
sub-harmonic resonance (1,1:2/3).

5.3. Time histories, frequency spectra and Poincaré projections of chaotic responses

Under the excitation amplitude pd ¼ 776, time histories, corresponding Fourier spectra and Poincaré
projections in the region of the chaotic response Cð1; 1 : 1=2Þ are inspected in the experiment and in the
analysis. At the position x ¼ 0:79 and Z ¼ 0:21, the responses are recorded. Typical response of the experiment
is shown in Fig. 7 at o ¼ 49:8. In Fig. 7(a), the time history of the deflection ~w is shown with the time t=te

normalized by the excitation period te ¼ 2p=o. In the figure, the irregular movement of the chaotic response
occurs especially in the negative z-direction. These response involves the dynamic snap-through transition of
the shell-panel. Fig. 7(b) shows the Fourier spectrum of the chaotic responses. The ordinate indicates the
amplitude A of the spectrum scaled by decibel, while the abscissa denotes the non-dimensional Fourier
frequency osp. The Fourier spectrum has predominant spike of spectrum at the half of excitation frequency
o=2. The peak spike of ð2=5Þo also appears in the response, within the long duration. Therefore, the chaotic
response Cð1; 1 : 1=2Þ is induced dominantly from the sub-harmonic response of 1/2 order involving the
harmonic component of ð2=5Þo of the excitation frequency [32]. Fig. 7(c) shows the Poincaré projection of the
chaotic response. The responses of the deflection ~w and the velocity ~w;ot are sampled 6000 points at the phase
delay y ¼ 2p=3 radian from the maximum amplitude of the excitation acceleration. The Poincaré projections
show a figure with an elbow-shaped bend.

Corresponding to the chaotic response Cð1; 1 : 1=2Þ, analytical results are shown in Fig. 8 at o ¼ 48:0. In the
numerical integrations of the Runge–Kutta–Gill method, time-step increment Dt is chosen as 1=240 of the
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excitation period te. After an initial transient response caused by the numerical integration is well decayed,
the response after 3700te is applied for the inspection of chaotic responses. The time history shows the similar
movement to the experimental result, even though the peak amplitude is slightly smaller than that of the
experiment. The Fourier spectrum of the chaotic response shows the peaks of ð2=5Þo and o=2 simultaneously.
The Poincaré projection has the same aspect as the experimental result.

In Fig. 9, the other chaotic response Cð1; 1 : 2=3Þ in the experiment are detected at the frequency o ¼ 38:2.
The chaotic response is generated in the lower frequency range of the sub-harmonic resonance (1,1:1/2). As
shown in Fig. 9(a), the chaotic response Cð1; 1 : 2=3Þ shows the large amplitude response with asymmetric
movement with respect to the equilibrium position of ~w ¼ 0. In Fig. 9(b), distinguished spectrum components
of the chaotic response clearly appears at the frequencies (1/2)o and (2/3)o simultaneously. This type of
chaotic responses is closely related to the ultra-sub-harmonic resonance of 2/3 order. The Poincaré projection
of the chaos Cð1; 1 : 2=3Þ is shown in Fig. 9(c). The figure of projection curves gently, which is different
qualitatively from the figure with an elbow-shaped bend of the chaos Cð1; 1 : 1=2Þ in Fig. 7(c).

In the analysis, predominant chaotic responses Cð1; 1 : 2=3Þ are generated from the excitation frequency
o ¼ 44:6 to 47.8. Fig. 10 shows the time history, the Fourier spectrum and the Poincaré projection
of Cð1; 1 : 2=3Þ. In Fig. 10(a) at o ¼ 45:0, the time history of the chaos shows the large amplitude response. As
shown in the frequency–response curves of Fig. 6(b), the amplitude of the chaos overlaps the amplitudes of
periodic responses of the sub-harmonic resonance (1,1:1/2) and the ultra-sub-harmonic resonance (1,1:2/3).

In the Fourier spectrum of the chaotic time response in Fig. 10(b), main spikes of the spectrum can be
observed related to the resonance responses of the sub-harmonic resonance of 1/2 order and the ultra-sub-
harmonic resonance of 2/3 order. Comparing the analytical result of the Poincaré projection in Fig. 10(c) with
the experimental result in Fig. 9(c), the figures of projections have similar features.

5.4. The maximum Lyapunov exponents and the Lyapunov dimension of the shell-panel

Following the procedure by Wolf et al. [37], our programming code is established. The maximum Lyapunov
exponents of the chaotic response of the shell-panel are calculated. If the maximum Lyapunov exponent of
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a response has a positive value the responses can be confirmed as the chaos. Furthermore, increasing the
embedding dimension constructed from the chaotic time history, number of vibration modes which
contributes to the chaos can be estimated by the convergence of the maximum Lyapunov exponent.

Fig. 11(a) shows the maximum Lyapunov exponents lmax related to the embedding dimension e in the
chaotic responses of Cð1; 1 : 1=2Þ and Cð1; 1 : 2=3Þ obtained by the experiment. For the chaos Cð1; 1 : 1=2Þ as
the embedding dimension increases more than e ¼ 6, the maximum Lyapunov exponents lmax converge to a
positive constant value lmax ¼ 1:7. Half of the embedding dimension corresponds to the number of vibration
modes which contributes to the chaos [40]. For the chaotic response Cð1; 1 : 2=3Þ, the maximum Lyapunov
exponent converges to lmax ¼ 1:0 as the embedding dimension increases more than e ¼ 8 in Fig. 11(a).
Consequently, the number of vibration modes in the chaos Cð1; 1 : 1=2Þ and Cð1; 1 : 2=3Þ are counted as 3 and
4, respectively.

In the analysis, the Lyapunov dimension dL of the chaotic responses Cð1; 1 : 1=2Þ and Cð1; 1 : 2=3Þ are
calculated by increasing the assumed number of vibration modes Ic. The convergence of the Lyapunov
dimensions are shown in Fig. 11(b). When the number of modes Ic in the Cð1; 1 : 1=2Þ increases to Ic ¼ 3, the
value of dL converges to the value dL ¼ 4:8. The corresponding maximum Lyapunov exponent takes
lmax ¼ 2:8. For the chaos Cð1; 1 : 2=3Þ as the number of mode increases Ic ¼ 4, the converged Lyapunov
dimension is dL ¼ 5:5 and the maximum Lyapunov exponent is lmax ¼ 3:3. The number of vibration modes,
contributes to the chaos, has excellent agreement both in the experiment and in the analysis. The maximum
Lyapunov exponents have same order. There is still discrepancy between the experimental and analytical
results which remain to a future work on the shell-panel.

5.5. Modal interaction in the chaotic responses

By applying the principal component analysis to the chaotic time histories at multiple positions of the shell
surface, contributions of vibration modes to the chaotic responses are determined. The chaotic time histories
of deflection are measured simultaneously at six positions on the shell surface. The positions are selected as
ðx ¼ 0:21; Z ¼ 0:21Þ, (0.5, 0.21), (0.79, 0.21), (0.5, 0.5), (0.79, 0.5) and (0.79, 0.79). The measuring positions are
arranged on the half-area of the shell surface to detect symmetric and asymmetric modes of vibration.

Using the principal component analysis, contribution ratio and related modal pattern are calculated.
Fig. 12(a) shows the contribution ratio and the corresponding modal pattern for the chaotic response Cð1; 1 :
1=2Þ at o ¼ 49:8. The largest principal component, which corresponding to the lowest vibration modes (1,1)
prevails contribution ratio of 97 percent. The second larger contribution of 1.6 percent corresponds to the
mode with a nodal circle, because modes (1,3) and (3,1) are simultaneously generated. Two modes of same
kind with different angular orientation can be combined when the modes are degenerate, i.e., the modes have
approximately equal frequencies. These combined modes can be easily generated because the shell-panel has
the square boundary with all edges simply supported and the very shallow curvatures. The third contribution
of 1.1 percent is related to the combined mode of (1,2) and (2,1), i.e., the mode has one nodal diagonal line.
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The fourth larger component has 0.5 percent of the higher mode. In the analysis, as shown in Fig. 12(b), the
largest contribution ratio is 97 percent of the mode (1,1), while the second larger and the third larger
contribution ratios are 1.7 and 1.0 percent, respectively, corresponding to same type of vibration mode of the
experiment. The fourth component has 0.3 percent of contribution.
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Figs. 13(a) and (b) show the results of principal component analysis in the chaotic response (1,1:2/3) of the
experiment and of the analysis, respectively. In Fig. 13(a), the largest component with the vibration mode (1,1)
takes 94 percent of contribution, while the second larger contribution takes 3.4 percent with the combined
mode of (2,1) and (1,2). The third contribution has 1.7 percent with the combined mode of (3,1) and (1,3). The
fourth contribution has 0.9 percent in the higher mode. As shown in Fig. 13(b) of the analytical results, the
largest component of the mode (1,1) takes 97 percent. The second component takes 1.5 percent of which mode
is the combined mode of (3,1) and (1,3). The third component has 0.8 percent with the combined mode of (2,1)
and (1,2). The second and the third components are exchanged in the modal pattern compared with the
experimental result. The fourth component has 0.3 percent of contribution. It seems that the exchange of the
higher modes comes from the assumption of symmetric configuration of the shell-panel used in the analysis.
For the chaotic response of the ultra-sub-harmonic resonance Cð1; 1 : 2=3Þ in the experiment, the higher
modes of vibration have larger contribution to the chaos compared with the result related to the sub-harmonic
resonance Cð1; 1 : 1=2Þ.
6. Conclusions

Precise experiment and analysis have been carried out on modal interaction in chaotic vibrations of a
shallow double-curved shell-panel with simply supported edges subjected to the gravity and periodic
acceleration. Main results are summarized as follows.
(1)
 The dominant chaotic responses of the shallow shell-panel are generated from the periodic responses of the
sub-harmonic resonance of 1/2 order and of the ultra-sub-harmonic resonance of 2/3 order, corresponding
to the lowest mode of vibration predominantly.
(2)
 The number of vibration modes, which contributes to the chaotic response of the sub-harmonic resonance
of 1/2 order, is 3, while the number of vibration modes generated in the chaotic response of the ultra-sub-
harmonic resonance of 2/3 order is 4.
(3)
 In the chaotic response of the sub-harmonic resonance of 1/2 order, the lowest mode of vibration
contributes predominantly. Higher two combined modes, of degenerate vibration modes, with a nodal
circle and with a nodal diagonal line have the contribution ratio 2 and 1 percent, respectively. In the
chaotic response of the ultra-sub-harmonic resonance of 2/3 order in the experiment, the lowest mode of
vibration has a main contribution. The higher three modes of vibration have the contribution ratio from 1
to 3 percent.
(4)
 Fairly good agreements are obtained between the experimental results and the analytical results of the
chaotic responses.
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Appendix

The solution of the compatibility equation (1) is expressed as

f ¼ ð1=2Þpyx
2
þ ð1=2ÞpxZ

2 þ pxyxZþ
X

m

X
n

d ð0Þmnðb̂mn � âmnÞ sin mx sin nZ

þ
X

k

X
l

X
m

X
n

ðb̂kl b̂mn � âkl âmnÞfy
ð1Þ
klmn cosðk �mÞ x cosðl � nÞZ

þ yð2Þklmn cosðk �mÞ x cosðl þ nÞZþ yð3Þklmn cosðk þmÞ x cosðl � nÞZ

þ yð4Þklmn cosðk þmÞx cosðl þ nÞZg; ðk; l;m; n ¼ 1; 2; 3; . . .Þ, (17)
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where notation m ¼ mp is introduced and d ð0Þmn; y
ðiÞ
klmn ði ¼ 1; 2; 3; 4Þ are

d ð0Þmn ¼ cðaym2 þ axb
2n2Þ=ðm2 þ b2n2Þ

2,

yð1Þklmn ¼ �ðcb
2=8Þðml � knÞ2ð1� dkmÞð1� dlnÞ=fðk �mÞ2 þ b2ðl � nÞ2g2,

yð2Þklmn ¼ ðcb
2=8Þðml þ knÞ2=fðk �mÞ2 þ b2ðl þ nÞ2g2,

yð3Þklmn ¼ ðcb
2=8Þðml þ knÞ2=fðk þmÞ2 þ b2ðl � nÞ2g2,

yð4Þklmn ¼ �ðcb
2=8Þðml � knÞ2=fðk þmÞ2 þ b2ðl þ nÞ2g2. (18)

In the foregoing, the symbol dkm is Kronecker’s delta. The arbitrary time functions px; py and pxy for the
in-plane boundary condition of Eq. (7) can be expressed as

py ¼
X

m

X
n

fdð1Þmnðb̂mn � âmnÞ þ eð1Þmnðb̂
2
mn � â2

mnÞg þ g1,

px ¼
X

m

X
n

fd ð2Þmnðb̂mn � âmnÞ þ eð2Þmnðb̂
2
mn � â2

mnÞg þ g2,

pxy ¼ 0, (19)

where dðiÞmn; e
ðiÞ
mn and gi ði ¼ 1; 2Þ are functions related to the shell geometry, the in-plane spring stiffness and the

initial in-plane displacements, respectively.
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